

ТЕРМОСТАТ ЖИДКОСТНЫЙ ЦИРКУЛЯЦИОННЫЙ **BT-400**

Руководство по эксплуатации ТКЛШ 4.106.032 РЭ

СОДЕРЖАНИЕ

1 Описание и работа термостата	4
1.1 Назначение	4
1.2 Технические характеристики	4
1.3 Состав термостата	5
1.4 Устройство и принцип работы	6
1.5 Маркировка	7
1.6 Упаковка	7
2 Использование по назначению	8
2.1 Эксплуатационные ограничения	8
2.2 Подготовка к использованию	8
2.3 Включение и выключение	9
2.4 Дисплей в рабочем режиме	10
2.5 Установка температуры регулирования	10
2.6 Управление защитами	12
2.7 Установка температуры срабатывания защиты от перегревания	13
2.8 Управление встроенными часами	14
2.9 Установка времени включения и выключения	15
2.10 Секундомеры	16
2.11 Меню настройки	17
2.12 Установка типа теплоносителя	18
2.13 Параметры ПИД-регуляторов	19
2.14 Параметры датчиков	21
2.15 Подключение внешнего датчика	22
2.16 Коррекция температуры	23
2.17 Установка порога готовности	24
2.18 Работа по программе	24
2.19 Таймер	
3 Текущий ремонт	
4 Транспортирование и хранение	
4.1 Транспортирование	27
4.2 Хранение	27
5 Прочие сведения	
5.1 Форма записи при заказе	27
5.2 Сведения о приемке	28
5.3 Свидетельство об упаковке	28

5.4 Гарантийны	ые обязательства	. 28
5.5 Сведения с	рекламациях	. 28
6 Сведения о техн	ическом обслуживании	. 29
ПРИЛОЖЕНИЕ А.	Перечень ссылочных нормативных документов	. 30
ПРИЛОЖЕНИЕ Б.	Запрос на техническое обслуживание	. 31

! Перед применением термостата, пожалуйста, прочитайте данное руководство.

Настоящее руководство по эксплуатации (РЭ) распространяется на термостат жидкостный циркуляционный ВТ-400 (далее по тексту — термостат и содержит сведения, необходимые для изучения и правильной технической эксплуатации термостата.

К работе с термостатом допускаются лица, изучившие настоящее руководство по эксплуатации, имеющие необходимую профессиональную подготовку и обученные правилам техники безопасности при работе с электроустановками.

Изготовитель оставляет за собой право вносить в конструкцию и схему термостата изменения, не влияющие на его технические характеристики, без коррекции эксплуатационной документации.

. Лица и организации, использующие термостат, несут ответственность за разработку соответствующих мер безопасности при работе.

1 ОПИСАНИЕ И РАБОТА ТЕРМОСТАТА

1.1 Назначение

1.1.1 Термостат ВТ-400 предназначен для поддержания заданной температуры жидкого теплоносителя, циркулирующего во внешних потребителях. В качестве внешних потребителей к термостату могут быть подключены термостатирующие контуры лабораторных химических реакторов, измерительных приборов и другого оборудования.

1.1.2 При эксплуатации в рабочих условиях термостат устойчив к воздействию климатических факторов для исполнения УХЛ 4.2 ГОСТ 15150 со следующими уточнениями условий эксплуатации:

- температура окружающего воздуха, °С от 10 до 35
- относительная влажность воздуха при температуре 25 °C, %...... до 80

1.1.3 Термостат ВТ-400 не является средством измерений.

1.2 Технические характеристики

1.2.1 Диапазон установки регулируемой температуры, °С С от 100 до 400
1.2.2 Дискретность установки регулируемой температуры, °С
1.2.3 Цена единицы младшего разряда индикатора температуры, °С
1.2.4 Максимальное давление насоса, бар
• нагнетания0.33
• всасывания0.23
1.2.5 Максимальная производительность насоса, л/мин
• нагнетания15
• всасывания
1.2.6 Объем теплоносителя во внутренней ванне термостата при 20 °С, л 5
1.2.7 Рекомендуемый теплоноситель:
• для диапазона температур от 100 до 300 °С ПМС-100 ГОСТ 13032
1.2.8 Габаритные размеры, мм, не более 270×490×860
1.2.9 Масса, кг, не более50
1.2.10 Время непрерывной работы в лабораторных условиях, ч, не менее
1.2.11 Средний срок службы, лет7
1.2.12 Средняя наработка на отказ, ч 4000
1.2.13 Питание термостата осуществляется от сети переменного тока, соответствующей требованиям ГОСТ 32144, со следующими уточнениями:
• напряжение, В
• частота, Гц50±1

1.2.14 Потребляемая мощность, кВт, не более......2.5

1.2.15 Система безопасности термостата имеет звуковую сигнализацию, световую индикацию и включает:

• систему диагностики неисправностей схемы управления;

- систему контроля исправности управляющего датчика;
- регулируемую защиту от перегревания теплоносителя;
- защиту от низкого уровня теплоносителя в ванне термостата;
- защиту от перегревания электродвигателя насоса;
- защиту от пробоя и обрыва нагревателя или управляющего силового элемента.

1.2.16 Встроенный датчик температуры..... Pt1000

1.2.17 Разрешение графического жидкокристаллического индикатора, точек128×32

1.2.18 По требованиям безопасности термостат удовлетворяет требованиям ГОСТ 12.2.007.0.

1.2.19 По способу защиты от поражения электрическим током термостат относится к классу I.

1.3 Состав термостата

1.3.1 Комплект поставки термостата ВТ-400 соответствует перечню, указанному в таблице 1.

Таблица 1

Наименование	Обозначение документа	Количество	
1 Термостат BT-400	ТКЛШ 4.106.032	1	
2 Трубопровод-перемычка	ТКЛШ 6.457.008	1	
3 Пробка резиновая №19*	покупное изделие	2	
4 Кружка мерная	покупное изделие	1	
5 Руководство по эксплуатации	ТКЛШ 4.106.032 РЭ	1	
* пробки установлены на корпусе термостата и используются при хранении и			
транспортировке термостата			

1.3.2 Для измерения и регулирования температуры теплоносителя во внешних потребителях дополнительно потребуется внешний датчик температуры ВТ-Д.

1.4 Устройство и принцип работы

1.4.1 Внешний вид термостата с демонтированными защитными кожухами показан на рисунке 1

Рисунок 1 — Внешний вид термостата ВТ-400

- 1 блок регулирования температуры;
- 2 лицевая панель, содержит органы управления и индикации;
- 3 автоматические предохранители и разъем интерфейса RS-232;
- 4 штуцеры газового затвора;
- 5 штуцер с присоединительной резьбой M27×2 для подключения внешнего потребителя (подача теплоносителя);
- 6 штуцер с присоединительной резьбой М27×2 для подключения внешнего потребителя (возврат теплоносителя);
- 7 крышка заливной трубки, оборудованная щупом;
- 8 заливная трубка;
- 9 устройство для слива теплоносителя.

1.4.2 Работа термостата заключается в поддержании заданной температуры потока теплоносителя, прокачиваемого насосом блока регулирования через теплообменники внешних потребителей.

Температура теплоносителя измеряется датчиком, представляющим собой платиновый термометр сопротивления. Электронная схема управления сравнивает результат измерения с заданием, установленным оператором, и вычисляет текущее значение мощности, подводимой к нагревателю, так, чтобы температура теплоносителя соответствовала заданной. Вычисление может проводиться как по пропорционально-интегрально-дифференциальному закону (ПИД) с предварительно установленными коэффициентами регулирования, так и полностью автоматически — с самонастройкой в процессе работы.

Система безопасности термостата отключает двигатель насоса и нагреватель при срабатывании хотя бы одной из защит или неисправности управляющего датчика (1.2.15). При срабатывании системы безопасности раздается звуковой сигнал, загорается индикатор 12 (рисунок 2) и на дисплей 10 выводится информация о причине неисправности.

Встроенные электронные часы позволяют задавать время включения и выключения термостата.

В процессе работы термостата на дисплее 10 отображается температура теплоносителя, значение уставки (задание), мощность нагрева, текущее время и дополнительная служебная информация. Установка режимов работы термостата осуществляется органами управления, расположенными на лицевой панели 2 (рисунок 1).

1.4.3 На рисунке 2 показана лицевая панель блока регулирования термостата:

Рисунок 2 — Лицевая панель

10 - жидкокристаллический дисплей;

- 11 пиктограммы, обозначающие функциональное назначение кнопок 14;
- 12 индикатор срабатывания системы безопасности (красного цвета);
- 13 индикатор стабилизации температуры теплоносителя (зеленого цвета);
- 14 функциональные кнопки, их назначение определяется пиктограммами 11. При отсутствии пиктограмм — это кнопки для перемещения указателя и изменения значений параметров;
- 15 кнопка отмены текущего действия;
- 16 кнопка подтверждения текущего действия;
- 17 установка температуры срабатывания защиты от перегревания теплоносителя;
- 18 разъем для подключения внешнего управляющего датчика;
- 19 кнопка включения блока регулирования.

1.5 Маркировка

1.5.1 Маркировочная наклейка, расположенная на правой панели термостата, содержит:

- товарный знак предприятия-изготовителя;
- наименование и обозначение термостата;
- данные о номинальных значениях напряжения, частоты питания и потребляемой мощности;
- заводской номер термостата по системе нумерации предприятия-изготовителя;
- единый знак обращения продукции на рынке государств членов Таможенного союза;
- дату изготовления.

1.5.2 На транспортную тару нанесены основные и дополнительные информационные надписи, манипуляционные знаки «ВЕРХ», «ХРУПКОЕ. ОСТОРОЖНО», «БЕРЕЧЬ ОТ ВЛАГИ» в соответствии с ГОСТ 14192.

1.6 Упаковка

1.6.1 В ящик, изготовленный по чертежам предприятия, уложены комплектующие в соответствии с перечнем, указанным в таблице 1.

Руководство по эксплуатации помещено в полиэтиленовый пакет.

Упакованные составные части уложены внутрь ящика.

- 1.6.2 В упаковочном листе указаны следующие сведения:
- наименование и адрес предприятия-изготовителя;
- наименование и номер термостата;
- комплектность термостата;
- дата упаковки;
- подпись упаковщика и печать предприятия-изготовителя.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

При использовании термостата следует принимать во внимание следующие эксплуатационные ограничения:

- термостат нельзя использовать во взрывоопасных помещениях;
- термостат не имеет специальной защиты от влаги и пыли, следовательно, не должен использоваться в пыльных или влажных помещениях;
- термостат должен подключаться только к электрической сети с заземлением.

Требуется полное отключение от электропитания в следующих случаях:

- необходимо избегать любой опасности, связанной с использованием термостата;
- проводится техническое обслуживание термостата;
- идет подготовка к ремонту специалистами.

. Полное отключение означает: вилка сетевого кабеля вынута из электрической розетки.

2.2 Подготовка к использованию

2.2.1 Выбрать место установки термостата вдали от источников тепла и со свободным доступом воздуха для вентиляции блока регулирования термостата в процессе работы.

2.2.2 Установить термостат на горизонтальную поверхность и демонтировать защитные кожухи, установленные на корпусе термостата.

Во время установки вилка сетевого кабеля термостата должна быть вынута из электрической розетки.

2.2.3 Подключить термостат к внешнему потребителю, выполнив необходимые шланговые подсоединения к штуцерам 5 и 6 (рисунок 1). Объем заполнения шланговых соединений и внешнего потребителя должен быть известен.

2.2.4 В заливную трубку 8 медленно влить 4 литра теплоносителя с помощью мерной кружки из комплекта поставки термостата. Включить блок регулирования, задать значение уставки температуры равным 9 °C и отключить защиту от низкого уровня теплоносителя в ванне термостата «Уровень» (см. 2.12). После того, как насос заработает, добавить теплоноситель в объеме необходимом для заполнения шланговых соединений и внешнего потребителя. Долить примерно 1 литр теплоносителя и навинтить на заливную трубку крышку 7 оборудованную щупом. Уровень теплоносителя должен находиться между метками, нанесенными на щуп.

2.2.5 После достижения рабочей температуры уточнить рабочий объем теплоносителя, для этого включить защиту от низкого уровня теплоносителя в ванне термостата «Уровень». Если защита не сработает, значит теплоносителя достаточно.

2.2.6 В противном случае выполнить процедуру добавления теплоносителя следующим образом:

- добавить 0.5 литра теплоносителя, отключить защиту «Уровень», включить насос, выждать 5-10 секунд и включить защиту «Уровень»;
- если защита сработает (уровень жидкости ниже нормы), последовательно добавлять теплоноситель, как описано выше, до тех пор, пока не прекратится срабатывание защиты от низкого уровня теплоносителя в ванне термостата.

2.2.7 Установить тип теплоносителя «ПМС-100» (см. 2.12).

2.2.8 При задании уставки строку «t1 = 9 °C» рекомендуется не изменять, перед выключением термостата выбрать в качестве текущей уставки «t1 = 9 °C».

После выключения блока регулирования следует опасаться возможного переполнения термостата. Это может произойти, если внешний потребитель расположен выше термостата и имеет достаточно большой объем. В случае переполнения возможна утечка горячего теплоносителя через штуцеры газового затвора 4 (рисунок 1).

2.2.9 Подключить один из штуцеров газового затвора 4 (рисунок 1) к источнику инертного газа (аргона) для предотвращения окислительной деструкции теплоносителя. Расход газа подобрать экспериментально.

2.2.10 Установить защитные кожухи и зафиксировать их винтами.

2.2.11 При замене теплоносителя или проведении работ по очистке термостата, слить теплоноситель через устройство для слива теплоносителя 9 (рисунок 1). Надеть сливной шланг на штуцер устройства и закрепить его хомутом. Свободный конец шланга опустить в емкость для сбора теплоносителя объемом не менее 10 литров. Ключом на 22 ослабить гайку устройства для слива теплоносителя.

. Категорически запрещается сливать теплоноситель, нагретый до температуры 100 °С.

2.3 Включение и выключение

2.3.1 После подключения сетевого кабеля к электрической сети термостат переходит в режим ожидания. Подключение сопровождается кратковременной подсветкой дисплея 10 (рисунок 2).

2.3.2 В режиме ожидания все устройства термостата, кроме встроенных часов, находятся в выключенном состоянии. Термостат не реагирует на органы управления, за исключением кнопки включения 19.

2.3.3 Для перевода термостата из режима ожидания в рабочий режим нажать кнопку включения 19, и удерживать ее в нажатом состоянии не менее половины секунды.

2.3.4 Работа термостата начинается с самодиагностики. По завершении проверки исправности составных частей на дисплей выводится сообщение с результатом диагностики, и выполняется последовательность действий, описанная в таблице 2.

Таблица 2

Результат самодиагностики	Сообщение Последующие действия	
Все системы исправны, ошиб- ки при тестировании не об- наружены	`` <i>тестОК</i> "	 подается короткий звуковой сигнал; включается насос и управление нагревателем; термостат переходит в рабочий ре- жим.
Основные системы исправны, но при тестировании обнару- жены ошибки в работе вспо- могательных устройств	" <i>тестнеисправность"</i> например: " <i>тестбатарея села</i> "	 подается протяжный звуковой сигнал; включается насос и управление нагревателем; термостат переходит в рабочий режим.
Обнаружена неисправность в работе основных узлов или системы безопасности	" тестХХ"	 подается протяжный звуковой сигнал; работа насоса и нагревателя блокируются; на дисплей выводится сообщение с описанием неисправности.

2.3.5 Выключение термостата аналогично включению: нажать и удерживать не менее 0.5 секунды кнопку 19.

2.4 Дисплей в рабочем режиме

2.4.1 Термостат может управлять температурой теплоносителя в одном из двух режимов:

в режиме регулирования по уставке;

• в режиме регулирования по программе.

2.4.2 Состояние дисплея в режиме регулирования по уставке показано на рисунке 3.

температура	индикатор упр	авления	индин	катор включения или
теплоносителя	от внешнего д	атчика	Выклі	очения по времени
		م فرق	/ 13·25_	текущее время
мощности	100.0	2 100	0.00	уставка
нагрева			٩ ٩	температуры
зад	ание защита	часы	меню	

пиктограммы функциональных кнопок

Рисунок 3 — Дисплей в режиме регулирования по уставке

2.4.3 Состояние дисплея в режиме регулирования по программе показано на рисунке 4.

пиктограммы функциональных кнопок

Рисунок 4 — Дисплей в режиме регулирования по программе

2.5 Установка температуры регулирования

Для входа в режим установки температуры регулирования служит функциональная кнопка «задание» — это кнопка (◀) при появлении на дисплее соответствующей пиктограммы.

2.5.1 Во встроенной памяти термостата хранятся значения 3-х уставок температуры и программа, состоящая из 10-ти температурно-временных отрезков. Работа термостата по программе описана в 2.18.

2.5.2 Уставка, по которой выполняется регулирование температуры, называется текущей. В качестве текущей может быть выбрана любая из трех уставок. Значение каждой уставки может быть установлено независимо от значений других уставок.

2.5.3 Диапазон изменения значений уставок зависит от выбранного теплоносителя. Выбор теплоносителя описан в 2.12.

2.5.4 Если в течение продолжительного времени не производить манипуляций с кнопками, термостат вернется в рабочий режим. 2.5.5 Процедура выбора и изменения значения выбранной уставки проиллюстрирована на рисунке 5.

Рисунок 5 — Изменение значения уставки температуры

2.5.6 Для выбора уставки в качестве текущей кнопками (▲) и (▼) подвести к ней указатель. Значение отмеченной указателем уставки дублируется крупными цифрами в правой части дисплея. Для подтверждения выбора отмеченной уставки нажать кнопку 16 (←). Для отмены выбора нажать кнопку 15 (Ҳ) (рисунок 2).

2.5.7 Для изменения численного значения отмеченной указателем уставки нажать кнопку (▶). На рамке, обрамляющей значение уставки в правой части дисплея, появятся "засечки", указывающие на изменяемую позицию в численном значении. Цифра в отмеченной позиции мигает. Нажатиями кнопок (▲) и (▼) установить требуемую цифру в отмеченной позиции. Если удерживать кнопку нажатой, значение уставки будет изменяться непрерывно. Нажатиями кнопок (◀) и (▶) переместить отметку изменяемой позиции. Дискретность изменения значения уставки зависит от положения изменяемой позиции: если отмечена позиция десятков, то при единичном нажатии кнопки (▲) или (▼) значение уставки изменится на 10 °C. Если отмечена позиция десятых долей, то значение уставки изменится на 0.1 °C соответственно. Закончить ввод нового значения уставки нажатием кнопки 16 (⊷). Для возврата к значению уставки до ее изменения нажать кнопку 15 (★) (рисунок 2). Пример изменения значения 3-ей уставки с 40 °С на 150 °С показан на рисунке 6.

Рисунок 6 — Пример изменения уставки температуры

2.6 Управление защитами

Для входа в режим управления защитами служит функциональная кнопка «защита» — это кнопка (<) при появлении на дисплее соответствующей пиктограммы.

2.6.1 Система защит является составной частью системы безопасности термостата. Краткие названия и назначение ее составных частей приведены в таблице 3.

Таблица 3

Название	Назначение
Сторож	Контроль превышения температуры теплоносителя над установленным значением
Уровень	Контроль уровня теплоносителя во внутренней ванне термостата
Hacoc	Контроль температуры двигателя насоса
ТЭНы	Контроль исправности нагревателей и схемы управления ими

2.6.2 Вход в режим управления защитами происходит автоматически при срабатывании хотя бы одной из защит.

2.6.3 При срабатывании защиты раздается звуковой сигнал и загорается красный индикатор срабатывания системы безопасности 12 (рисунок 2). Работа насоса и нагревателя будет блокирована. На дисплее отобразится текущее состояние системы защит. На рисунке 7 показано состояние дисплея при срабатывании защиты от снижения уровня теплоносителя в ванне термостата ниже допустимого:

Рисунок 7 — Пример срабатывания защиты

2.6.4 Для возврата термостата в рабочий режим, необходимо выполнить одно из следующих действий:

- устранить причину срабатывания защиты;
- отключить соответствующую систему контроля кнопкой ().
- Так как отключение любой защиты делает использование термостата небезопасным, пользоваться такой возможностью следует только в случае неисправности самой системы защиты или при заполнении термостата теплоносителем.
- . Термостат с отключенной защитой не должен эксплуатироваться без постоянного контроля со стороны персонала.

2.6.5 После устранения причины срабатывания защиты или ее отключения кнопкой (▶) индикатор 12 (рисунок 2) погаснет. Перевести термостат в рабочий режим нажатием кнопки 16 (←).

2.7 Установка температуры срабатывания защиты от перегревания

2.7.1 При правильной установке температура срабатывания защиты от перегревания должна соответствовать предельно допустимой температуре теплоносителя. Определение предельной температуры теплоносителя проиллюстрировано на рисунке 8:

Рисунок 8 — Определение предельной температуры теплоносителя

. Устройство защиты от перегревания должно устанавливаться на температуру, по крайней мере, на 25 °С ниже температуры вспышки теплоносителя.

. Для нормальной работы термостата вязкость теплоносителя при температуре регулирования не должна превышать 40 мм²/с.

2.7.2 При установке типа используемого теплоносителя в соответствии с 2.12 автоматически устанавливается допустимый диапазон изменения температуры защиты от перегревания.

2.7.3 Температура срабатывания защиты от перегревания теплоносителя устанавливается вращением регулятора 17 (рисунок 2). Для изменения положения регулятора используйте подходящий инструмент, например, часовую отвертку.

. Для дополнительной защиты, например, биологического образца, температура срабатывания защиты должна быть максимально приближена к температуре регулирования.

2.7.4 Для точной установки температуры срабатывания защиты (рисунок 2):

- повернуть регулятор 17 по часовой стрелке до упора;
- установить требуемую температуру регулирования в соответствии с 2.5;
- после того, как температура теплоносителя достигнет установленной, поворачивать регулятор 17 против часовой стрелки до тех пор, пока не сработает защита;
- медленно поворачивать регулятор 17 по часовой стрелке до тех пор, пока не погаснет красный индикатор 12;
- перевести термостат в рабочий режим нажатием кнопки 16 (+).
- 2.7.5 Для приблизительной установки температуры срабатывания защиты:
- перевести термостат в режим управления защитами в соответствии с 2.6;
- вращением регулятора 17 установить желаемую температуру срабатывания защиты, контролируя ее значение на дисплее (см. рисунок 7);
- перевести термостат в рабочий режим нажатием кнопки 16 (-).

2.7.6 Дискретность установки температуры срабатывания защиты составляет 5 °С. Изменение численного значения сопровождается характерными щелчками.

2.7.7 Для проверки температуры срабатывания защиты от перегревания теплоносителя:

- установить температуру регулирования (2.5) выше установленной температуры срабатывания защиты на 10 °С;
- наблюдать за значением температуры теплоносителя на дисплее (рисунок 3);
- значение температуры теплоносителя на дисплее во время подачи звукового сигнала и зажигания индикатора 12 является фактической температурой срабатывания защиты.

2.8 Управление встроенными часами

Для входа в режим управления встроенными часами служит функциональная кнопка «часы» — это кнопка (-) при появлении на дисплее соответствующей пиктограммы.

2.8.1 Наличие встроенных часов позволяет термостату переходить из режима ожидания в рабочий режим и обратно в соответствии с установленными значениями времени, то есть «включаться» и «выключаться» в заданное время. Кроме того, в термостате реализована функция секундомера.

На рисунке 9 показан пример вывода информации на дисплей в режиме управления встроенными часами:

Рисунок 9 — Управление встроенными часами

2.8.2 Для установки текущего времени:

- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Настройка";
- нажать кнопку ();
- установить указатель против пункта "Текущее время";
- нажать кнопку ();
- нажатиями кнопок (▲) и (▼) установить численное значение мигающих часов "00:00" в диапазоне от 0 до 23, для непрерывного изменения удерживать кнопку в нажатом состоянии;
- нажатием кнопки (◀) или (▶) переключить ввод на установку минут;
- нажатиями кнопок (▲) и (▼) установить численное значение мигающих минут "00:00" в диапазоне от 0 до 59, для непрерывного изменения удерживать кнопку в нажатом состоянии;
- закончить ввод нового значения текущего времени нажатием кнопки 16 (↔);
- выйти из режима настройки часов нажатием кнопки 16 (-) (рисунок 2).

2.8.3 Для корректировки хода часов:

- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Настройка";
- нажать кнопку (▶);
- установить указатель против пункта "Поправка";
- нажать кнопку ();
- нажатием кнопок (◀) и (▶) откорректировать ход часов: при «отставании» часов полосу настройки смещать вправо, в сторону положительных значений. Если часы «спешат», полосу настройки смещать влево, в сторону отрицательных значений;
- для возврата в режим управления часами нажать кнопку 16 (+) (рисунок 2).

2.8.4 Для переключения термостата в рабочий режим нажать кнопку 16 (↔) или 15 (×) (рисунок 2). Если в течение продолжительного времени не производить манипуляций с кнопками, термостат вернется в рабочий режим самостоятельно.

2.9 Установка времени включения и выключения

2.9.1 Установка времени включения или выключения термостата выполняется в режиме управления встроенными часами (см. 2.8).

2.9.2 Для установки времени включения или выключения термостата:

- перевести термостат в режим управления встроенными часами нажатием функциональной кнопки «часы» (см. 2.8);
- нажатиями кнопок (▲) и (▼) установить указатель против нужного времени: включения или выключения (рисунок 9);

- для ввода значения нажать кнопку ();
- нажатиями кнопок (▲) и (▼) установить численное значение мигающих часов "00:00" в диапазоне от 0 до 23, для непрерывного изменения удерживать кнопку в нажатом состоянии;
- нажатием кнопки (◀) или (▶) переключить ввод на установку минут;
- нажатиями кнопок (▲) и (▼) установить численное значение мигающих минут "00:00" в диапазоне от 0 до 59, для непрерывного изменения удерживать кнопку в нажатом состоянии;
- закончить ввод нового значения времени включения или выключения нажатием кнопки 16 (↔) (рисунок 2).

2.9.3 Для отмены включения или выключения по времени нажать кнопку 15 (**X**) (рисунок 2). После нажатия на нее вместо соответствующего времени на дисплее появится: "--:--".

2.9.4 После выполнения включения или выключения в заданное время, соответствующее значение времени будет сброшено в "--:-" для того, чтобы избежать повторного выполнения этой процедуры в последующие дни.

2.9.5 Последние значения времен включения и выключения сохраняются в памяти термостата и могут быть воспроизведены нажатием кнопки (▶). Это избавляет от необходимости ввода одних и тех же значений времен включения или выключения при их многократном использовании.

2.10 Секундомеры

2.10.1 Для определения длительности интервалов времени в блоке регулирования предусмотрены четыре 2-х интервальных независимых секундомера.

На рисунке 10 показано состояние дисплея в режиме использования секундомеров:

Рисунок 10 — Секундомеры

2.10.2 Для вызова функции секундомера из режима управления встроенными часами (2.8):

- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Секундомер" (рисунок 9);
- нажать кнопку (▶).

2.10.3 В этом режиме изменяется назначение функциональных кнопок 14 (рисунок 2). Каждая кнопка управляет своим секундомером и, в зависимости от его текущего состояния, может выполнять следующие функции:

- ПУСК запускает счет времени остановленного секундомера;
- СТОП останавливает счет времени работающего секундомера;
- СБР сбрасывает результат законченного измерения. Кроме того, сбросить текущий результат измерения можно в любой момент длительным нажатием на кнопку управления соответствующим секундомером.

2.10.4 Для выхода из режима секундомера нажать кнопку 16 (-) (рисунок 2).

Выход из режима секундомера не останавливает текущий счет и не сбрасывает результат.

2.11 Меню настройки

ļ

Для входа в меню настройки служит функциональная кнопка «меню» — это кнопка (▶) при появлении на дисплее соответствующей пиктограммы.

2.11.1 Меню термостата состоит из набора пунктов. Каждый пункт может быть следующего типа:

- раскрываемый, то есть имеющий подпункты. В свою очередь, подпункт также может быть типа, описанного ниже:
- переключатель, то есть принимающий фиксированные значения, например: "включено" или "выключено";
- число, то есть принимающий численное значение;
- набор параметров устройства.

На рисунке 11 приведен фрагмент меню настройки термостата:

Рисунок 11 — Меню настройки

2.11.2 Для перемещения указателя по пунктам меню служат кнопки (🔺) и (🗸).

2.11.3 Пункты меню, название которых отмечено символом [+] могут быть раскрыты кнопкой (▶). После раскрытия указатель перемещается только между подпунктами раскрытого пункта.

2.11.4 Для сворачивания раскрытого пункта и возврата указателя на верхний уровень, служит кнопка (◀).

2.11.5 Для не раскрываемого пункта меню, в зависимости от его типа, нажатие кноп-ки (▶) приведет:

- для переключателя к переходу к следующему значению, например, от "включено" к "выключено". Изменение значений пункта-переключателя происходит «по кругу» после последнего значения опять следует первое;
- для числа к началу процедуры ввода нового значения;
- для набора параметров к переходу к процедуре их редактирования.

2.12 Установка типа теплоносителя

2.12.1 Для корректной работы термостата в меню настройки (см. 2.11) установить тип используемого теплоносителя. При этом будут установлены:

- диапазон изменения температуры регулирования (уставок);
- диапазон изменения температуры срабатывания защиты от перегревания теплоносителя;
- оптимальные параметры регулирования температуры в автоматическом режиме.

2.12.2 Рекомендуемые теплоносители и соответствующие им диапазоны изменения температур регулирования и срабатывания защиты от перегревания приведены в таблице 4.

Приведенные в таблице 4 величины температурных диапазонов ограничиваются температурным диапазоном термостата (рисунок 8). Рекомендуемые теплоносители приведены в разделе «Технические характеристики» (1.2.7) руководства по эксплуатации термостата.

Таблица 4

Теплоноситель	Диапазон изменения уставок	Диапазон изменения защиты
Вода дистиллированная	от 5 до 90 °С	от 15 до 100 °C
ПМС-5	от минус 40 до 105 °C	от минус 30 до 115 °C
ПМС-10	от минус 30 до 150 °C	от минус 20 до 160 °C
ПМС-20	от 0 до 180 °C	от 10 до 190 °C
ПМС-50	от 50 до 200 °C	от 60 до 210 °C
ПМС-100	от 90 до 300 °C	от 100 до 310 °C
Этанол	от минус 80 до 5 °С	от минус 70 до 15 °C
ТОСОЛ (А-40, А-65)	от минус 40 до 95 °С	от минус 20 до 105 °C

- При использовании теплоносителя не указанного в 1.2.7 необходимо проконсультироваться с техническим специалистом предприятия-изготовителя. Температурная уставка термостата, при использовании рекомендованного теплоносителя ПМС-100, не должна превышать 300 °C.
- При нагревании полиметилсилоксановых (ПМС) теплоносителей от температур, при которых их вязкость более 40 мм²/с, термостат использует щадящий режим нагрева с ограничением мощности. Это уменьшает тепловую деструкцию таких теплоносителей и увеличивает срок их использования.
 - 2.12.3 Процедура выбора типа теплоносителя проиллюстрирована на рисунке 12:

Рисунок 12 — Выбор типа теплоносителя

- 2.12.4 Для установки типа используемого теплоносителя:
- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Жидкость";

 последовательными нажатиями кнопки () установить используемый в термостате теплоноситель из списка теплоносителей, рекомендованных в таблице 4.

2.12.5 Если применяемый теплоноситель отсутствует в списке, установить значение: "Жидкость: Любая". В этом случае диапазоны изменения температур регулирования и срабатывания защиты от перегревания будут определяться температурным диапазоном термостата.

2.13 Параметры ПИД-регуляторов

2.13.1 ПИД-регулятор представляет собой устройство, вырабатывающее выходное управляющее воздействие по пропорционально-интегрально-дифференциальному закону. Уровень выходного управляющего воздействия зависит от величины несоответствия между заданием (уставкой) и входной измеряемой величиной.

В данном случае:

- выходное управляющее воздействие мгновенная мощность, подводимая к нагревателю;
- входная измеряемая величина сигнал датчика температуры;
- задание уставка температуры.

В этом случае регулятор будет вырабатывать такое управляющее воздействие, при котором температура датчика стремилась бы к установленному заданию (уставке).

При ПИД-регулировании выходное управляющее воздействие зависит:

- от разницы между заданием (уставкой) и входной измеряемой величиной пропорциональная составляющая;
- от интеграла (суммы) этих разностей интегральная составляющая;
- от скорости изменения входной измеряемой величины дифференциальная составляющая.

2.13.2 В термостате имеются два ПИД-регулятора:

- основной с входным сигналом от встроенного датчика температуры;
- внешний с входным сигналом от датчика температуры, подключаемого к внешнему разъему 18 (рисунок 2).
- 2.13.3 Для входа в редактор параметров ПИД-регулятора из меню настройки (см. 2.11):
- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Параметры ПИД";
- нажать кнопку () для раскрытия пункта меню;
- нажатиями кнопок (**^**) и (**v**) выбрать ПИД-регулятор: "Основной" или "Внешний";
- нажать кнопку () для входа в редактор параметров ПИД-регулятора.

Состояние дисплея в режиме редактирования параметров основного ПИД-регулятора показано на рисунке 13:

включение адаптивного режима

коэффициент пропорциональности		
постоянная времени интегрирования постоянная времени дифференцирования	РАвто: Вкл Кр =120.0 Ti = 10.0 Td = 5.0	Основной регулятор

Рисунок 13 — Параметры ПИД-регулятора

2.13.4 Адаптивный режим ПИД-регулятора позволяет получить удовлетворительное качество регулирования в широком диапазоне температур для различных типов теплоносителей. Но в ряде случаев, например, при работе с внешним управляющим датчиком, использование ПИД-регулятора с неизменяемыми параметрами предпочтительнее, так как дает более предсказуемый результат. Поэтому в блоке параметров ПИД-регуляторов предусмотрена возможность отключения адаптивного режима. Для включения или выключения адаптивного режима ПИД-регулятора:

- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Авто";
- нажать кнопку () для переключения режима.

Для изменения численного значения параметра ПИД-регулятора:

- подвести к нему указатель нажатиями кнопок (▲) и (▼);
- нажать кнопку ();
- установить нужное значение кнопками (▲) и (▼), перемещая мигающий курсор кнопками (◀) или (▶);
- закончить ввод нового значения нажатием кнопки 16 (←) (рисунок 2). Для отмены внесенных изменений нажать кнопку 15 (×).

Для выхода из режима редактирования параметров ПИД-регулятора и возврата в меню настройки нажать кнопку 16 (-) или 15 (×).

2.13.5 При использовании ПИД-регуляторов с неизменяемыми параметрами в большинстве случаев значения параметров, установленные предприятием-изготовителем, дают удовлетворительные результаты. Если же параметры ПИД-регуляторов требуют корректировки, необходимо подобрать их значения экспериментально.

В первую очередь определяется коэффициент пропорциональности Кр (рисунок 13). Для этого значения постоянных времени интегрирования и дифференцирования устанавливаются равными нулю: Ti = 0.0 и Td = 0.0. Затем строится график изменения температуры теплоносителя в зависимости от времени при работе по уставке — переходная характеристика. Уставка должна быть расположена выше исходной температуры теплоносителя. Возможные виды переходных характеристик показаны на рисунке 14:

Рисунок 14 — Определение Кр

- 1 Значение Кр слишком велико, его следует значительно уменьшить.
- 2 Наблюдаются затухающие колебания. Если предполагается использовать дифференциальную составляющую, то это значение Кр оптимально. Если дифференциальная составляющая использоваться не будет, то Кр следует уменьшить, чтобы получить переходные характеристики вида 3 или 4.
- 3 Наблюдается небольшой выброс и быстро затухающие колебания. Если допустим небольшой перегрев, Кр оптимален.
- 4 Температура плавно подходит к установившемуся значению без выбросов и колебаний.
- 5 Подход к установившемуся значению сильно затянут, Кр следует увеличить.

Следует обратить внимание на то, что во всех рассмотренных выше случаях установившееся значение температуры теплоносителя не совпадает со значением уставки. Эта статическая ошибка устраняется введением интегральной составляющей.

Рисунок 15 — Определение Td

Для определения постоянной времени дифференцирования Td коэффициент пропорциональности Кр должен быть установлен таким образом, чтобы переходная характеристика соответствовала кривой 1 (рисунок 15). Постоянную времени дифференцирования Td следует подобрать так, чтобы переходная характеристика приняла вид кривой 2 (рисунок 15).

После настройки коэффициента пропорциональности, а, при необходимости, и постоянной времени дифференцирования, настраивается постоянная времени интегрирования. Интегральная составляющая предназначена для того, чтобы убрать остаточное рассогласование между установившимся значением температуры и заданием (уставкой).

Виды переходных характеристик при различных постоянных времени интегрирования показаны на рисунке 16:

(Ti = 0.0).

уменьшить.

выбрана оптимально.

Ті следует увеличить.

Рисунок 16 — Определение Ті

2.14 Параметры датчиков

2.14.1 В термостате установлен встроенный (основной) датчик температуры и допускается подключение внешнего датчика температуры к разъему 18 (рисунок 2).

2.14.2 Каждый датчик представляет собой платиновый термометр сопротивления (ТСП) и имеет собственный независимый блок параметров, соответствующий ГОСТ 6651 (рисунок 17):

Рисунок 17 — Параметры ТСП

Каждый датчик имеет сопротивление при 0 °С равное 1000 Ом и стандартный набор коэффициентов для ТСП с W₁₀₀ = 1.385:

- A = 3.9083 × 10⁻³ °C⁻¹
- $B = -5.7750 \times 10^{-7} \text{ °C}^{-2}$
- $C = -4.1830 \times 10^{-12} \circ C^{-4}$

2.14.3 При необходимости может быть проведена индивидуальная градуировка любого датчика по образцовому термометру и изменены его параметры.

- 2.14.4 Для входа в редактор параметров датчика из меню настройки (2.11):
- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Параметры ТСП";
- нажать кнопку () для раскрытия пункта меню;

- нажатиями кнопок (🔺) и (🕶) выбрать датчик: "Основной" или "Внешний";
- нажать кнопку (🕨) для входа в редактор параметров датчика.

Для изменения численного значения параметра датчика:

- подвести к нему указатель нажатиями кнопок (▲) и (▼);
- нажать кнопку ();
- установить нужное значение кнопками (▲) и (▼), перемещая мигающий курсор кнопками (◀) или (▶);
- закончить ввод нового значения нажатием кнопки 16 (Ч) (рисунок 2). Для отмены внесенных изменений нажать кнопку 15 (𝗙).

2.15 Подключение внешнего датчика

2.15.1 Для т измерения и регулирования температуры теплоносителя во внешних потребителях термостат предусматривает подключение внешнего датчика температуры к разъему 18 (рисунок 2). Для присоединения внешнего датчика совместить ключи на разъеме 18 и в ответной части разъемного соединения на кабеле датчика и вставить ответную часть до упора.

2.15.2 Для установки режима работы термостата от внешнего датчика из меню настройки (2.11):

- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Внешний датчик";
- нажатием кнопки (▶) установить "Внешний датчик: Вкл".

В рабочем режиме на дисплее в позицию «температура теплоносителя» будет выводиться значение температуры, измеренное внешним датчиком. Кроме того, будет активен «индикатор управления от внешнего датчика» (рисунок 3).

2.15.3 В режиме работы термостата от внешнего датчика ПИД-регуляторы включаются каскадно, как показано на рисунке 18:

Рисунок 18 — Работа от внешнего датчика

При использовании ПИД-регуляторов с неизменяемыми параметрами (2.13.5) постоянная времени интегрирования внешнего ПИД-регулятора должна быть значительно больше постоянной времени интегрирования основного ПИД-регулятора: Ті_{внешнего} > 10×Ті_{основного}.

2.16 Коррекция температуры

2.16.1 Дисплей показывает температуру теплоносителя, измеряемую встроенным датчиком (рисунок 3). Эта температура часто не соответствует действительной температуре в ванне термостата, и еще менее она соответствует температуре теплоносителя во внешней подключенной системе. Разность этих температур определяется измерением действительной температуры при помощи контрольного термометра и вводится в блок регулирования в виде поправочного коэффициента (коррекции), который сохраняется в памяти и добавляется к измеряемой температуре теплоносителя.

Коррекция — это процедура, с помощью которой показания дисплея приводятся в соответствие с температурой теплоносителя, определенной контрольным термометром.

2.16.2 Для изменения величины коррекции из меню настройки (2.11):

- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Коррекция, °С";
- нажать кнопку ();
- установить нужное значение кнопками (▲) и (▼), перемещая мигающий курсор кнопками (◀) или (▶);
- закончить ввод нового значения нажатием кнопки 16 (←) (рисунок 2). Для отмены внесенных изменений нажать кнопку 15 (×).

Пример определения величины коррекции показан на рисунке 19:

Рисунок 19 — Коррекция температуры

- Дождаться стабилизации показаний температуры теплоносителя на дисплее.
- Поместить в теплоноситель контрольный термометр с соответствующей погрешностью измерения температуры.
- Определить величину коррекции температуры как разницу между температурой, измеренной контрольным термометром и показаниями дисплея:

$$\Delta T = T_2 - T_1$$

 $\Delta T = 39.75 \text{ °C} - 40.00 \text{ °C} = -0.25 \text{ °C}$

- Ввести величину коррекции в память термостата в соответствии с 2.16.2.
- Коррекцию следует проводить либо при значении температуры, которая чаще используется при работе, либо в средней точке диапазона термостатирования.

2.17 Установка порога готовности

2.17.1 Индикатор стабилизации температуры теплоносителя 13 (рисунок 2) загорается в случае, если разница между текущей температурой теплоносителя и установленной температурой не превышает значение, указанное в пункте меню настройки "Готовность" в течение 1 минуты.

Срабатывание индикатора 13 останавливает процесс адаптивной настройки ПИДрегулятора (2.13.4) и сообщает о выходе термостата на режим.

2.17.2 Для изменения величины порога готовности из меню настройки (2.11):

- нажатиями кнопок (▲) и (▼) установить указатель против пункта "Готовность, °С";
- нажать кнопку ();
- установить нужное значение кнопками (▲) и (▼), перемещая мигающий курсор кнопками (◀) или (▶);
- закончить ввод нового значения нажатием кнопки 16 (←) (рисунок 2). Для отмены внесенных изменений нажать кнопку 15 (×).
- . Минимальное значение порога готовности составляет 0.02 °С.
- Не следует устанавливать низкое значение порога готовности без необходимости. Необоснованное уменьшение величины порога готовности затягивает процесс адаптивной настройки ПИД-регулятора.

2.18 Работа по программе

2.18.1 Помимо режима поддержания установленной температуры, термостат может выполнять программу, состоящую из 10-ти температурно-временных отрезков — этапов. Каждый этап программы определяется:

- порядковым номером;
- конечной температурой;
- длительностью.

2.18.2 Вход в процедуру редактирования программы из режима установки температуры регулирования (2.5) проиллюстрирован на рисунке 20:

Рисунок 20 — Редактирование программы

Ход выполнения программы из 4-х этапов, показанной на рисунке 20, проиллюстрирован на рисунке 21:

Рисунок 21 — Выполнение программы

- С момента запуска программы температура выводится на значение T₁ = 20.00°С и удерживается на этом уровне в течение времени t₁ = 90 мин.
- Температура выводится на уровень $T_2 = 30.00$ °C со скоростью $(T_2-T_1)/t_2 = 0.2$ °C/мин. Переход к следующему этапу происходит при достижении температуры T_2 .
- Температура удерживается на уровне T₂ = 30.00°С в течение t₃ = 110 мин.
- Температура выводится на уровень T₄ = 40.00°С со скоростью (T₄-T₃)/t₄ = 0.11°С/мин.

2.18.3 Выполняются все этапы программы, длительность которых не равна нулю. Такие этапы называются значимыми. Этапы с нулевой длительностью при выполнении программы игнорируются.

2.18.4 Если температура выполняемого этапа равна температуре предыдущего значимого этапа, такой этап называется статическим. Целью выполнения такого этапа является поддержание постоянной температуры теплоносителя в течение определенного времени.

2.18.5 Если температура выполняемого этапа отлична от температуры предыдущего значимого этапа, такой этап называется динамическим. Целью выполнения такого этапа является поддержание постоянной скорости изменения температуры теплоносителя. Скорость определяется, как разность температур выполняемого и предыдущего значимого этапа, деленная на длительность выполняемого этапа: V = ($T_{выполн} - T_{пред}$) / $t_{выполн}$. Выполнение динамического этапа заканчивается при достижении конечной температуры, даже в том случае, если выполнение потребует меньше или больше времени, чем установлено в длительности этапа.

2.18.6 Первый выполняемый этап всегда статический. Отличие первого этапа от других статических этапов состоит в том, что стабилизация температуры начинается от текущей температуры теплоносителя.

2.18.7 После выполнения последнего значимого этапа термостат переходит в режим ожидания.

Следите за тем, чтобы задаваемые этапы программы были выполнимы, так как максимальная скорость изменения температуры определяется массой теплоносителя, его теплоемкостью, теплообменом с окружающей средой и другими параметрами.

2.18.8 Для ввода или редактирования программы:

- нажатием функциональной кнопки «задание» (2.5) войти в режим установки температуры;
- нажатиями кнопок (▲) и (▼) установить указатель против строки "ПРОГРАММА";
- нажать кнопку ();
- нажатиями кнопок (▲) и (▼) установить указатель против вводимого или редактируемого этапа;
- нажать кнопку (4) для ввода значения температуры этапа;
- установить нужное значение температуры кнопками (▲) и (▼), перемещая мигающий курсор кнопками (◀) или (▶);

- закончить ввод нового значения нажатием кнопки 16 (ч) (рисунок 2). Для отмены внесенных изменений нажать кнопку 15 (×).
- нажать кнопку () для ввода значения длительности этапа;
- установить нужное значение длительности в минутах в диапазоне от 0 до 999 кнопками (▲) и (▼), перемещая мигающий курсор кнопками (◀) или (▶);
- закончить ввод нового значения нажатием кнопки 16 (←) (рисунок 2). Для отмены внесенных изменений нажать кнопку 15 (×);
- таким образом ввести значения параметров для всех редактируемых этапов;
- закончить ввод программы нажатием кнопки 16 (+) (рисунок 2).

2.18.9 Запуск программы на выполнение проиллюстрирован на рисунке 22:

Рисунок 22 — Запуск программы

Для запуска программы:

- нажатием функциональной кнопки «задание» (2.5) войти в режим установки температуры;
- нажатиями кнопок (▲) и (▼) установить указатель против строки "ПРОГРАММА";
- нажать кнопку 16 (Ч) (рисунок 2);
- кнопками (▲) и (▼) установить номер стартового этапа, он будет отмечен меткой ● в редакторе программы (рисунок 20);
- запустить программу нажатием кнопки (◀).

2.18.10 Если при входе в режим установки температуры программа уже исполнялась, ее выполнение можно продолжить нажатием кнопки (▶).

2.19 Таймер

2.19.1 Встроенный таймер предназначен для напоминания оператору об истечении установленного интервала времени. Его можно использовать при необходимости выполнения какой-либо процедуры через определенное время, например, замены образцов, подготавливаемых для анализа.

2.19.2 Войти в режим управления таймером можно нажатием кнопки 16 (↔) (рисунок 2) в рабочем режиме. Состояние дисплея этом в режиме показано на рисунке 23:

Рисунок 23 — Таймер

2.19.3 Таймер использует обратный отсчет. При достижении нулевого значения раздается кратковременный звуковой сигнал и на дисплее появляется информационное сообщение «Время истекло!», которое можно убрать нажатием любой кнопки.

2.19.4 Для установки начального времени отсчета нажатиями кнопки (◀) выбрать изменяемую часть часы-минуты-секунды и установить требуемое значение кнопками (▲) и (▼). Запустить таймер кнопкой (▶).

З ТЕКУЩИЙ РЕМОНТ

Возможные неисправности и способы их устранения приведены в таблице 5, во всех остальных случаях выхода термостата из строя следует обращаться на предприятиеизготовитель.

Таблица 5

Неисправность	Признак неисправности	Вероятная причина	Способ устранения
Термостат не пере- ключается в рабо- чий режим (2.3.3)	Не светится дисплей	Сработал автоматиче- ский предохранитель, обрыв сетевого кабеля, неисправность вилки сетевого кабеля	Включить сработав- ший предохранитель, отремонтировать се- тевой кабель, заме- нить вилку сетевого кабеля
Перегревание двигателя насоса	Регулярно срабатывает защита от перегрева- ния двигателя насоса	Использование вязкого теплоносителя	Заменить теплоноси- тель

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1 Транспортирование

4.1.1 Транспортирование термостата в упакованном виде производят всеми видами транспорта в закрытых транспортных средствах в условиях хранения, соответствующих условиям 3 ГОСТ 15150.

4.1.2 После транспортирования при отрицательных температурах термостат должен быть выдержан без упаковки в рабочих условиях в течение 6 часов.

4.2 Хранение

4.2.1 Термостат до введения в эксплуатацию следует хранить на складах в упаковке предприятия-изготовителя в условиях хранения, соответствующих 1 ГОСТ 15150.

4.2.2 Хранение термостата без упаковки возможно при температуре окружающего воздуха от 10 °C до 40 °C и относительной влажности до 80 % при температуре 25 °C. Содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержания коррозийно-активных агентов для атмосферы типа I в соответствии с ГОСТ 15150.

5 ПРОЧИЕ СВЕДЕНИЯ

5.1 Форма записи при заказе

5.1.1 В качестве опции термостат может быть укомплектован внешним датчиком температуры.

5.1.2 Запись при заказе термостата:

Термостат жидкостный циркуляционный ВТ-400-<внешний датчик>

<внешний датчик> — В — наличие внешнего датчика

5.1.3 Пример записи при заказе:

ВТ-400-В — термостат с внешним датчиком.

5.2 Сведения о приемке

Термостат жидкостный циркуляционный ВТ-400 заводской № _____ прошел приемо-сдаточные испытания и первичную аттестацию на соответствие ТУ 26.51.53-035-44229117-2019 и допущен к применению:

Дата выпуска _____

м.п.

ОКК _____

5.3 Свидетельство об упаковке

Термостат жидкостный циркуляционный ВТ-400 заводской № _____ упакован в соответствии с требованиями ТУ 26.51.53-035-44229117-2019:

Дата упаковки _____

м.п.

Упаковку произвел _____

5.4 Гарантийные обязательства

Гарантийный срок, в течение которого предприятие-изготовитель обязуется устранять выявленные неисправности, составляет 12 месяцев с момента ввода термостата в эксплуатацию, но не более 13 месяцев с момента отгрузки потребителю. Гарантийные права потребителя признаются в течение указанного срока, если он выполняет все требования по транспортировке, хранению и эксплуатации термостата.

5.5 Сведения о рекламациях

При возврате термостата предприятию-изготовителю для технического обслуживания или ремонта необходимо заполнить форму запроса на техническое обслуживание, приведенную в приложении Б.

При неисправности термостата в период гарантийного срока потребителем должен быть составлен акт рекламации с указанием выявленных неисправностей.

Гермостат, возвращаемый предприятию-изготовителю для технического обслуживания или ремонта, должен быть чистым. Если обнаружится, что термостат загрязнен, то он будет возвращен потребителю за его счет. Загрязненный термостат не будет ремонтироваться, заменяться или попадать под гарантию до тех пор, пока он не будет очищен потребителем.

Заполненная форма запроса на техническое обслуживание и, при необходимости, акт рекламации вместе с изделием высылаются в адрес предприятия-изготовителя:

000 «Термэкс»

🕢 634507, г. Томск, п. Предтеченск, ул. Мелиоративная, д. 10А, стр. 1.

☞ (3822) 49–21–52, 49–26–31, 49–28–91, 49–01–50, 49–01–45.

- termex@termexlab.ru
- https://termexlab.ru/

6 СВЕДЕНИЯ О ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ

Вид технического		Должность, фамилия и подпись		
Дата	обслуживания или ремонта	выполнившего работу	проверившего работу	обязательства

ПРИЛОЖЕНИЕ А. ПЕРЕЧЕНЬ ССЫЛОЧНЫХ НОРМАТИВНЫХ ДОКУМЕНТОВ

Обозначение	Наименование	
FOCT 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования безопасности	
ГОСТ 14192-96	Маркировка грузов	
ГОСТ 32144-2013	Электрическая энергия. Совместимость техни- ческих средств электромагнитная. Нормы ка- чества электрической энергии в системах электроснабжения общего назначения	
ГОСТ 13032-77	Жидкости полиметилсилоксановые. Техниче- ские условия	
FOCT 15150-69	Машины, приборы и другие технические изде- лия. Исполнения для различных климатиче- ских районов. Категории, условия эксплуата- ции, хранения и транспортирования в части воздействия климатических факторов внешней среды	
FOCT 6651-2009	Термопреобразователи сопротивления из пла- тины, меди и никеля. Общие технические тре- бования и методы испытаний	
ТУ 26.51.53-035-44229117-2019	Термостаты жидкостные серии МАСТЕР. Тех- нические условия	

ПРИЛОЖЕНИЕ Б. ЗАПРОС НА ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Запрос на техническое обслуживание
Адрес заказчика:
Телефон:
Факс:Е-mail:
Тип прибора или узла:
Заводской номер:
Краткое описание неисправности: